Identification of a Hydraulic Servo-axis Using Support Vector Machines
نویسندگان
چکیده
In this paper, different models of the pressure buildup inside a hydraulic servoaxis are compared. These models are obtained using RBF networks, local linear models and support vector machines (SVMs), with a particular focus on the latter. For SVMs, a reduction method is derived, which allows to reduce the number of support vectors without losing the generalization abilities of the SVM. Experimental results obtained at a hydraulic servo-axis and a comparison of the different modelling techniques conclude this paper.
منابع مشابه
Identification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines
In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملSTAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملVelocity Control of Electro Hydraulic Servo System by using a Feedback Error Learning Method
In this paper, a new control method based on FEL electro hydraulic servo control withnonlinear flux and internal friction, has been presented. The new approach based oncontrollers combined by a classic PD controller and a fuzzy controller is smart. This newtechnique has a good ability to control the performance and stability. Simulations have beencarried out in Matlab environment and the result...
متن کامل